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Introduction
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* Aging population [ass2012, cceos)

— Need to lower human burden

* RiSIng energy prices [swois]

— Affects both businesses and the elderly

* Internet of Things

— Cheaper embedded systems
— Better sensors
— Occupancy detection
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Occupancy Detection ¥, WESTERN

* Detecting people
e Good for home/office automation

* Occupancy detection can save up to
25% on these costs seci3)

* Climate control accounts for

— up to 40% of household energy usage [ABs11]

— 43% of office building usage [cAG12]
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An ideal system would be... &, WESTERN

* Low-Cost
— Prototype stage < $300

* Non-Invasive
— Minimal information gathered by system

e Reliable

— >75% occupancy detection accuracy

* Energy Efficient

— Prototype can last at least a week
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Can we create this
system?
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Necessary steps R, WeSTERN

1. Design Choices

2. Prototype Design

a) Hardware
b) Software

3. Criteria Evaluation

4. Did we meet our goals?
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Design Choices
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How do we evaluate sensors? T, WESTERN

* We want to
— See individual people

e We don’t want to

— Know who they are
— Know what they're doing
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Thermal Sensors 5, WESTERN

» Costis coming down fast
* Exciting new area for research
* Interesting applications

e “ThermoSense” [seci3]

— Can see human “blobs” in thermal data
— Very low resolution (8x8 pixels)
— 0.346 Root Mean Squared Error
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» Sensor space is changing fast

* Contribution of system elements

* Does their approach translate

* ThermoSense sensor not in Australia
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Prototype Design
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HW Architecture - Current &, WESTERN

 Direct data  Rawdatato * Processed data
collection processed data to insights

Sensing Pre-Processing Analysis
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HW Architecture - Current &, WESTERN

Melexis MLX90620

* Collects thermal data

« Narrower FOV (16°x60° vs 60°x60°)
« Rectangular (16x4 vs 8x8)

« Communicates bi-directionally

Sensing Pre-Processing Analysis
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HW Architecture - Current &, WESTERN

Passive Infrared Sensor (PIR)
« Collections motion data
» Provides rising signal on motion

Sensing Pre-Processing Analysis
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HW Architecture - Current &, WESTERN

Arduino Uno R3
« Embedded controller with
broad library support
« Converts raw sensing data
into degrees Celsius / motion
each frame

Sensing Pre-Processing Analysis
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HW Architecture - Current &, WESTERN

Raspberry Pi B+
* Cheap and powerful Linux platform
» Performs advanced analysis on
processed data
« Generates occupancy predictions

Sensing Pre-Processing Analysis
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HW Architecture - Current &, WESTERN

RPi Camera
« 1080p resolution
« Ground truth collection in
prototype stage

Sensing Pre-Processing Analysis
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HW Architecture - Current &, WESTERN

Wired

Wired

Arduino Uno R3

Wired

Passive Infrared
Sensor (PIR)

RPi Camera
(ground truth)

Sensing Pre-Processing Analysis
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Wireless

Room A Roof

Near Mains Power
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Room C Roof

Room B Roof
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Physical Prototype S0, WESTERN
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Software & ETRAA

* 1,600 SLOC

— Approx. 500 lines on Arduino (C++)
— Remaining 1,000 on Raspberry Pi (Python)

* Code allows capture, visualization and
analysis of thermal images
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Technique



Technique ), WESTERN

e Overview

1. Motion detection
2. Image subtraction

3. Machine learning
« Distilling good examples (feature extraction)
* Providing examples with correct answer
(training)
« Get out a model that can predict attributes
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1. Capture thermal image sequence
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2. Generate graph from “active” pixels, which
deviate significantly from mean
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3.  Extractfeatures from graph for classification purposes

Number of connected components = 2

A

Size of largest
connected component
=17

Number of total active pixels = 32
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4. Perform machine learning

1. Train on examples with true value
(features and ground truth)

2. Make predictions with your generated
model
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Video Demonstration @%@?ﬁﬁﬁ
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Evaluation



_ ® WEI\%\.{IERSITY OF
Non-Invasiveness () WESTERN

* Fulfilled through sensor choice

* Low resolution masks person and
action identification
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Cost

* Prototype < $300 target
* On par with ThermoSense cost

Part Cost Part Cost
MLX90620 $80 TMote Sky $110
Raspberry Pi B+ $50 Grid-EYE $50
Arduino Uno R3 $40 Passive Infrared Sensor $10
Passive Infrared Sensor $10

[°C level shifter $5

TOTAL $185 TOTAL $170

(a) Our project

Cost comparison

(b) ThermoSense (estimated)




Experimental Setup WESTERN

* Testing reliability and energy efficiency

a) View from side b) View from above 17cm
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Reliability - Aim

*R
T
C
a

— K Nearest Neighbours
(numeric / nominal)

— Linear Regression

— Multi-Layer Perceptron

eplicating
nermoSense’s
assification

gorithms:

(numeric)

(numeric)

WESTERN
%ms? AUSTRALIA

Trying our own

Multi-Layer
Perceptron (nominal)

K*
C4.5

Support Vector
Machine

Naive Bayes
0-R
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Reliability - Processing Pipeline %), WESIERN

1. Image
Capture on RPi

Thermal Data

Captured 2. Data
Images Labeling
3. Feature Per-Frame
Extraction Truth
1,1,1
Feature vectors from .
each active pixel frame List of
B vpx — truths
u 4. Weka Person
(1,11,11 ) Classification Count
(1,11,11),
(1,11,11)

1,1,2
List of estimates
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Reliability - Summary &0, WESTERN

* Best results
— K*, C4.5 (both ~82%)
— MLP also passable (~77%)
* ThermoSense paper’s choices not
sufficiently reliable with our dataset
— Why?
— S0 many unknowns

* Why are K* and C4.5 so much better?
— Entropy?
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Feature Plot - No Clear Cut
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Energy Efficiency (log scales)
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L 0, |

Low Pwr B



Energy Efficiency (log scales)
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Conclusions
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* Low Cost
— $185, and will only get cheaper

* Non-Invasive
— Thermal sensing is a good technique

e Reliable

— 82% classification accuracy

* Energy Efficient

— Prototype: 8 days. Minor changes: years
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Recommended Future Work ¥, WESTERN

* |oT integration
— How would this talk to other systems?

* Field-of-View modifications
— Undistorting captured images

* New Sensors

— MLX90621 (wider FOV)
— FliR Lepton (80x60 pixel)
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Additional Content
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Sensor Properties



Sensor Properties - Bias
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over capture
window



Sensor Properties - Noise
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Sensor Properties - Sensitivity

Temperature (°C)
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Evaluating Sensors
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How do we evaluate sensors? T, WESTERN

1. Presence

— Is there any occupant present in the sensed
area?

[TDS14]
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How do we evaluate sensors? T, WESTERN

2. Count

— How many occupants are there in the
sensed area?

[TDS14]
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How do we evaluate sensors? T, WESTERN

3. Location

— Where are the occupants in the sensed
area?

[TDS14]
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How do we evaluate sensors? T, WESTERN

4. Track

— Where do the occupants move in the sensed
area? (local identification)

[TDS14]
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How do we evaluate sensors? T, WESTERN

5. ldentity

— Who are the occupants in the sensed area?
(global identification)

[TDS14]



How do we evaluate sensors?
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Excludes

Irrelevant

Presence

Count

Identity

Location

Track
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"Doesn’t provide data at required level of accuracy for residential use.
2Uses smartphone as detector.
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Evaluating
sensors
against our
criteria
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How do we evaluate sensors? T, WESTERN

e We want

— Presence
— Count

e We don’t want
— ldentity

e We don’t care about

— Location
— Track
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Panasonic Grid-EYE
8x8 Thermal Array

T-Mote Sky

Passive Infrared
Sensor (PIR)

Sensing Pre-Processing Analysis
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e Overview

1. Motion detection
2. Image subtraction

3. Machine learning
« Distilling good examples (feature extraction)
* Providing examples with correct answer
(training)
« Get out a model that can predict attributes
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1. Capture thermal image sequence
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2.  When no motion (use PIR), update a background map
(b), standard deviation (0) and means using an
Exponential Weighted Moving Average
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3. When motion, consider pixels > 3o to be
“active”
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4. Generate graph from active pixels
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5.  Extractfeatures from graph for classification purposes

Number of connected components = 2

A

Size of largest
connected component
=17

Number of total active pixels = 32
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6. Perform machine learning

1. Train on examples with true value
(features and ground truth)

2. Make predictions with your generated
model



Evaluation - Accuracy WESTERN

Worst — Best
* Thermosense
— RMSE: 0.409 — 0.346
— Correlation: 0.926 — 0.946

* K* Numeric
— RMSE: 0.423 ( )
— Correlation: 0.760 (-0.166)



Evaluation - Accuracy WESTERN

Classifier RMSE | Precision (%) | Correlation (r)
ThermoSense Actual

KNN!? 0.346 ReSUItS

Lin Reg? 0.385 0.926

MLP 0.409 0.945

ThermoSense Replication

KNN (Nom)! 0.364 65.65

MLP 0.592 0.687

Lin Reg” 0.525 0.589

KNN (Num)! 1.123 0.377

Numeric
K* 0.423 0.760
0-R 0.651 -0.118
Nominal

K* 0.304 82.56

C4.5 0.314 82.39

MLP 0.362 77.14

SVM 0.398 67.18

N. Bayes 0.405 63.59

0-R 0.442 49.74

- Includes zero occupant cases in training data

2. Excludes number of connected components feature

%: Precision, measuring a nominal test result

r: Correlation coefficient, measuring a numeric test result



Evaluation - Accuracy WESTERN

Worst — Best
* Thermosense
— RMSE: 0.409 — 0.346
— Correlation: 0.926 — 0.946

* Three Test Suites
— Replication of their algorithms
— Our numeric algorithm, K* (measured with r)
— Our nominal algorithms (measured with %)



Evaluation - Accuracy WESTERN

Worst — Best
* Thermosense
— RMSE: 0.409 — 0.346
— Correlation: 0.926 — 0.946
* Our Replication
— RMSE: 1.123 — 0.364 ( )
— Correlation: 0.377 —0.687 (-0.239)

— Insufficient accuracy



Evaluation - Accuracy WESTERN

Worst — Best
* Thermosense
— RMSE: 0.409 — 0.346
 Nominal Suite
— RMSE: 0.304 — 0.405 (+0.042)
— Accuracy: 63.59 — 82.56

— Higher end does have sufficient accuracy



Evaluation - Accuracy
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SVM
Predictions

67% accuracy
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Different Prototype Designs

Radio | Sleep | Wake | Volts | Wake | Sample Avg Life

Model (mA) | (mA) (V) | (ms) (Hz) | (mW) | (days)
Existing X 34 Hh2 4.9 oo 0.20 | 255.84 8
Sleep X 34 H2 4.9 100 0.20 | 169.05 12
ThermoS. v ? ? 3.3 ? 0.20 | 15.91 131
LowPwr A v | 0.065 23 3.3 300 0.20 4.76 438
LowPwr B v | 0.065 23 3.9 300 0.01 0.44 | 4718

Radio: Does the model use radio transmission?

Sleep (mA):
Wake (mA):
Volts (V):

Wake (ms):

Milliamp current consumption in sleep state

Milliamp current consumption in wake state

Voltage requirement of model

Min. millisecond time model must be awake to sample & transmit once

(oc = never sleeps)

Freq. that model wakes and performs sample & transmit

Avg. milliwatt power given sleep/wake current, voltage, sample and wake time
Est. life of model assuming a perfect 50 watt-hour (Wh) battery

Sample (Hz):
Avg (mW):
Life (days):



