

Towards a Low-Cost, Non-Invasive System for Occupancy Detection using a Thermal Detector Array Ash Tyndall

Supervisors: Rachel Cardell-Oliver Adrian Keating Program: Bachelor of Computer Science (Honours) Program Dates: Semester 2, 2014 – Semester 1, 2015

Introduction

- Aging population [ABS2012, CCE09]
 - Need to lower human burden
- Rising energy prices [Swo15]

– Affects both businesses and the elderly

- Internet of Things
 - Cheaper embedded systems
 - Better sensors
 - Occupancy detection

Occupancy Detection

- Detecting people
- Good for home/office automation
- Occupancy detection can save up to 25% on these costs [BEC13]
- Climate control accounts for
 - up to 40% of household energy usage [ABS11]
 - 43% of office building usage [CAG12]

An ideal system would be...

- Low-Cost
 - Prototype stage < \$300</p>
- Non-Invasive
 - Minimal information gathered by system
- Reliable
 - >75% occupancy detection accuracy
- Energy Efficient
 - Prototype can last at least a week

Can we create this system?

- 1. Design Choices
- 2. Prototype Design
 - a) Hardware
 - b) Software
- 3. Criteria Evaluation
- 4. Did we meet our goals?

Design Choices

How do we evaluate sensors?

• We want to

- See individual people

- We don't want to
 - Know who they are
 - Know what they're doing

Thermal Sensors

- Cost is coming down fast
- Exciting new area for research
- Interesting applications
- "ThermoSense" [BEC13]
 - Can see human "blobs" in thermal data
 - Very low resolution (8x8 pixels)
 - 0.346 Root Mean Squared Error

- Sensor space is changing fast
- Contribution of system elements
- Does their approach translate
- ThermoSense sensor not in Australia

Prototype Design

• Direct data collection

- Raw data to processed data
- Processed data to insights

Pre-Processing

Melexis MLX90620

- Collects thermal data
- Narrower FOV (16°x60° vs 60°x60°)
- Rectangular (16x4 vs 8x8)
- Communicates bi-directionally

Pre-Processing

Sensing

Pre-Processing

Arduino Uno R3

- Embedded controller with broad library support
- Converts raw sensing data into degrees Celsius / motion each frame

Sensing

Pre-Processing

Raspberry Pi B+

- Cheap and powerful Linux platform
- Performs advanced analysis on processed data
- Generates occupancy predictions

Sensing

Pre-Processing

HW Architecture – Ideal M:1

Physical Prototype

- 1,600 SLOC
 - Approx. 500 lines on Arduino (C++)
 - Remaining 1,000 on Raspberry Pi (Python)
- Code allows capture, visualization and analysis of thermal images

Technique

Technique

Overview

- 1. Motion detection
- 2. Image subtraction
- 3. Machine learning
 - Distilling good examples (feature extraction)
 - Providing examples with correct answer (training)
 - Get out a model that can predict attributes

1. Capture thermal image sequence

2. Generate graph from "active" pixels, which deviate significantly from mean

3. Extract features from graph for classification purposes

- 4. Perform machine learning
 - Train on examples with true value (features and ground truth)
 - 2. Make predictions with your generated model

Video Demonstration

Evaluation

- Fulfilled through sensor choice
- Low resolution masks person and action identification

- Prototype < \$300 target
- On par with ThermoSense cost

Part	Cost
MLX90620	\$80
Raspberry Pi B+	\$50
Arduino Uno R3	\$40
Passive Infrared Sensor	\$10
I^2C level shifter	\$5
TOTAL	\$185

(a) Our project

Part	Cost
TMote Sky	\$110
Grid-EYE	\$50
Passive Infrared Sensor	\$10
TOTAL	\$170

(b) ThermoSense (estimated)

Cost comparison

Experimental Setup

• Testing reliability and energy efficiency

Reliability – Aim

- Replicating ThermoSense's classification algorithms:
 - K Nearest Neighbours (numeric / nominal)
 - Linear Regression (numeric)
 - Multi-Layer Perceptron (numeric)

- Trying our own
 - Multi-Layer
 Perceptron (nominal)
 - K*
 - C4.5
 - Support Vector Machine
 - Naïve Bayes
 - 0-R

Reliability – Processing Pipeline

Reliability – Summary

- Best results
 - K*, C4.5 (both ~82%)
 - MLP also passable (~77%)
- ThermoSense paper's choices not sufficiently reliable with our dataset
 - Why?
 - So many unknowns
- Why are K* and C4.5 so much better? – Entropy?
Feature Plot – No Clear Cut

Energy Efficiency (log scales)

Energy Efficiency (log scales)

Prototype Version

Conclusions

Conclusions

- Low Cost
 - \$185, and will only get cheaper
- Non-Invasive
 - Thermal sensing is a good technique
- Reliable
 - 82% classification accuracy
- Energy Efficient
 - Prototype: 8 days. Minor changes: years

Recommended Future Work

- IoT integration
 - How would this talk to other systems?
- Field-of-View modifications
 - Undistorting captured images
- New Sensors
 - MLX90621 (wider FOV)
 - FliR Lepton (80x60 pixel)

References & Questions?

- [ABS12] Australian Bureau of Statistics. Disability, ageing and carers, Australia: Summary of findings: Carers - key findings. Tech. Rep. 4430.0, 2012. Retrieved April 10, 2015 from http://abs.gov.au/ausstats/abs@.nsf/Lookup/D9BD84DBA2528FC9CA257C21000E4FC5.
- [ABS11] Australian Bureau of Statistics. Household water and energy use, Victoria: Heating and cooling. Tech. Rep. 4602.2, 2011. Retrieved October 6, 2014 from <u>http://abs.gov.au/ausstats/abs@.nsf/0/ 85424ADCCF6E5AE9CA257A670013AF89</u>.
- [BEC13] Beltran, A., Erickson, V. L., and Cerpa, A. E. ThermoSense: Occupancy thermal based sensing for HVAC control. In *Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings* (2013), ACM, pp. 1–8.
- [CCE09] Chan, M., Campo, E., Esteve, D., and Fourniols, J.-Y. Smart homes current features and future perspectives. *Maturitas* 64, 2 (2009), 90–97.
- [CAG12] Council of Australian Governments. Baseline Energy Consumption and Greenhouse Gas Emissions: In Commercial Buildings in Australia: Part 1 – Report. 2012. Retrieved April 10, 2015 from http://industry.gov.au/Energy/EnergyEfficiency/Non-residentialBuildings/Documents/CBBS-Part-1.pdf.
- [Swo15] Swoboda, K. Energy prices-the story behind rising costs. In Parliamentary Library Briefing Book 44th Parliament. Australian Parliament House Parliamentary Library, 2013. Retrieved February 3,
 2015 from

http://aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/BriefingBook44p/EnergyPrices.

Questions?

Additional Content

Sensor Properties

Sensor Properties – Bias

Average mean values over capture window

Sensor Properties – Noise

Graphs of noise of human pixel and background pixel

Sensor Properties – Sensitivity

Hot object moving across pixels at approx. constant velocity

Hot object moving across row of five pixels

Evaluating Sensors

1. Presence

– Is there any occupant present in the sensed area?

2. Count

– How many occupants are there in the sensed area?

3. Location

– Where are the occupants in the sensed area?

4. Track

- Where do the occupants move in the sensed area? (local identification)

5. Identity

 Who are the occupants in the sensed area? (global identification)

How do we evaluate sensors?

	Requ	uires	Excludes	Irrele	evant
	Presence	Count	Identity	Location	Track
Intrinsic					
Static					
Thermal	\checkmark	\checkmark	\checkmark	\checkmark	
CO_2	\checkmark	\checkmark	\checkmark		
Video	\checkmark	\checkmark	×	 ✓ 	\checkmark
Dynamic					
Ultrasonic	\checkmark	\checkmark	×		\checkmark
PIR	\checkmark	X	\checkmark		
Extrinsic					
Instrumented					
RFID	\checkmark^1	\checkmark	\checkmark	\checkmark	
$WiFi assoc.^2$	\checkmark^1	\checkmark	×	 ✓ 	
$WiFi triang.^2$	\checkmark^1	\checkmark	×		
GPS^2	\checkmark^1	×	\checkmark	\checkmark	
Correlative					
Electricity	\checkmark^1	×	\checkmark		

Evaluating sensors against our criteria

¹Doesn't provide data at required level of accuracy for residential use.

²Uses smartphone as detector.

How do we evaluate sensors?

- We want
 - Presence
 - Count
- We don't want – Identity
- We don't care about
 - Location
 - Track

References

[TDS14] Teixeira, T., Dublon, G., and Savvides, A. A survey of human-sensing: Methods for detecting presence, count, location, track, and identity. Tech. rep., Embedded Networks and Applications Lab (ENALAB), Yale University, 2010. Retrieved October 6, 2014 from

http://www.eng.yale.edu/enalab/publications/human_sensing_enalabWIP.pdf.

Thermosense Technique

Technique

Overview

- 1. Motion detection
- 2. Image subtraction
- 3. Machine learning
 - Distilling good examples (feature extraction)
 - Providing examples with correct answer (training)
 - Get out a model that can predict attributes

1. Capture thermal image sequence

 When no motion (use PIR), update a background map (b), standard deviation (σ) and means using an Exponential Weighted Moving Average

b =								
$\sigma =$								

3. When motion, consider pixels > 3σ to be "active"

4. Generate graph from active pixels

5. Extract features from graph for classification purposes

- 6. Perform machine learning
 - Train on examples with true value (features and ground truth)
 - 2. Make predictions with your generated model

- Thermosense
 - RMSE: 0.409 0.346
 - Correlation: 0.926 0.946
- K* Numeric
 - RMSE:
 - Correlation:

0.423 (-0.077) 0.760 (-0.166)

Evaluation – Accuracy

Classifier	RMSE	Precision (%)	Correlation (r)					
ThermoSense Actual								
KNN ¹	0.346							
$\operatorname{Lin} \operatorname{Reg}^2$	0.385		0.926					
MLP	0.409		0.945					
ThermoSense Replication								
KNN $(Nom)^1$	0.364	65.65						
MLP	0.592		0.687					
$\operatorname{Lin} \operatorname{Reg}^2$	0.525		0.589					
KNN $(Num)^1$	1.123		0.377					
Numeric								
K*	0.423		0.760					
0-R	0.651		-0.118					
Nominal								
K*	0.304	82.56						
C4.5	0.314	82.39						
MLP	0.362	77.14						
SVM	0.398	67.18						
N. Bayes	0.405	63.59						
0-R	0.442	49.74						

Results

¹: Includes zero occupant cases in training data

²: Excludes number of connected components feature

%: Precision, measuring a nominal test result

r: Correlation coefficient, measuring a numeric test result

Thermosense
 – RMSE: 0.409 – 0.346
 – Correlation: 0.926 – 0.946

- Three Test Suites
 - Replication of their algorithms
 - Our numeric algorithm, K^* (measured with r)
 - Our nominal algorithms (measured with %)

Thermosense
 – RMSE: 0.409 – 0.346
 – Correlation: 0.926 – 0.946

- Our Replication
 - RMSE: 1.123 0.364 (-0.018)
 - Correlation: 0.377 0.687 (-0.239)
 - Insufficient accuracy

Thermosense
 – RMSE: 0.409 – 0.346

Nominal Suite

- RMSE: 0.304 0.405 (+0.042)
- Accuracy: 63.59 82.56

- Higher end does have sufficient accuracy

Evaluation – Accuracy

SVM Predictions

67% accuracy

Different Prototype Designs

	Radio	Sleep	Wake	Volts	Wake	Sample	Avg	Life	
Model		(mA)	(mA)	(V)	(ms)	(Hz)	(mW)	(days)	
Existing	X	34	52	4.9	∞	0.20	255.84	8	
Sleep	X	34	52	4.9	100	0.20	169.05	12	
ThermoS.	✓	?	?	3.3	?	0.20	15.91	131	
LowPwr A	\checkmark	0.065	23	3.3	300	0.20	4.76	438	
LowPwr B	\checkmark	0.065	23	3.3	300	0.01	0.44	4718	
Radio:	Does the model use radio transmission?								
Sleep (mA):	Milliamp current consumption in sleep state								
Wake (mA):	Milliamp current consumption in wake state								
Volts (V):	Voltage requirement of model								
Wake (ms):	Min. mi	Min. millisecond time model must be awake to sample & transmit once							
× /	$(\infty = \text{never sleeps})$								
Sample (Hz):	Freq. that model wakes and performs sample & transmit								
Avg (mW):	Avg. milliwatt power given sleep/wake current, voltage, sample and wake tip								
Life (days):	Est, life of model assuming a perfect 50 watt-hour (Wh) battery								