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Occupancy Estimation using a Low-Pixel Count
Thermal Imager

Ash Tyndall, Rachel Cardell-Oliver, and Adrian Keating, SM, IEEE

Abstract—An occupancy estimation sensor system based on
low-pixel count sensor arrays is proposed. We evaluate a system
comprising a 4 by 16 thermal detector array. Machine learning
classifiers are used to interpret the raw data from the detector
array for deducing the number of occupants in the sensor’s
field of view. We observe that nominal classifiers provide more
robust classification than numerical classifiers. Further, entropy-
based classification is applied for the first time for occupancy
estimation and found to produce the lowest root mean squared
errors (RMSE) and highest correlation coefficients compared to
previously trialled classifiers.

I. INTRODUCTION

OCCUPANCY ESTIMATION is the problem of determin-
ing the number of people in a given space. Continually

knowing the number of occupants in a space can help reduce
energy consumption and greenhouse gas emissions in homes
or office buildings through more efficient climate control.
Occupancy estimation in homes for the elderly or disabled can
be used to improve the security and safety of the residents.
Robust occupancy estimation is also important for security
monitoring, emergency evacuation, and rescue operations.

The ideal occupancy estimation sensor system should be
reliable, privacy-preserving, low-cost, non-invasive and energy
efficient. Low pixel count sensor arrays satisfy these require-
ments since they are either the first of a new technology
to be developed, or are the lowest cost implementation of
a given technology. However, sensor arrays cannot directly
sense occupancy, but must be coupled with intelligent software
algorithms to infer occupancy counts.

Existing occupancy estimation algorithms for thermal array
sensors are either image-based or flow-based [1]. The former
analyse a two dimensional image of a scene whereas the latter
analyse movement through the monitored area. The image-
based approach is investigated in this paper because it is
most suitable for occupancy estimation in homes or offices,
where people may be stationary and accurate counting is of
high priority. Flow-based approaches are best suited to public
spaces such as shops and railway stations where large numbers
of people are in motion and the proneness of these systems
to cumulative counting errors is not so important [2]. Since
occupancy estimation with a single sensor modality tends to
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have low accuracy, ensemble methods have been proposed that
combine the results from multiple sensors and classifiers [3].

In this paper we present the development of a complete
occupancy estimation system from start to finish, based on low
pixel count thermal imaging technology. The design is based
on the results of a recently reported thermal array sensor sys-
tem, Thermosense [4]. Our system differs from Thermosense
in the choice of thermal sensor; positioning of the sensor;
and selection of classification algorithms. By examining the
effects of each of these choices on system performance we
contribute new insights for developing robust and general pur-
pose occupancy sensors. The main contributions of this paper
are as follows. First, we validate the feasibility and accuracy of
occupancy estimation using thermal array sensors. Second, we
determine notable properties of these sensing technologies that
affect their utility as occupant detectors including detection
threshold levels, angled imaging and the sampling rate-noise
trade off. Finally, we evaluate the robustness and generality of
existing methods when translated to different settings. We were
not able to replicate the classification accuracies of the Ther-
mosense study [4], but we did discover that entropy-measure
classification algorithms K* and C4.5 gave more accurate
predictions than the algorithms used in previous studies. Our
system is shown to be fit for purpose: privacy-preserving, low-
cost, non-invasive, energy efficient and sufficiently accurate
for applications such as controlling climate and lighting in
buildings. The results also demonstrate that there are many
open challenges for achieving the goal of next generation
occupancy estimation sensor systems with very high reliability
and the ability to configure themselves in new settings.

II. BACKGROUND AND RELATED WORK

This paper addresses the occupancy estimation problem
which is to determine the number of people in an area. Occu-
pancy estimation is a more complex problem than occupancy
detection which is to determine if there are any people in an
area or not. Occupancy estimation is related to the optical flow
or optical turnstile problem which is to detect and count people
moving through a space.

Many different human traits and sensor modalities have
been investigated for solving the occupancy estimation and
detection problems [1]. Either intrinsic or extrinsic traits of
people can be used for both tasks. Intrinsic traits are direct
measurements of human occupants. They can be either static
traits such as thermal emissions [4]–[8], CO2 emissions [9] or
still images captured by cameras [5], [10], [11]. Alternatively,
dynamic traits of human occupancy can be used, such as
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movement detected by ultrasound or PIR sensors [12], pressure
or movement sensors. Extrinsic traits are environmental fac-
tors that are correlated with human occupancy. For example,
occupancy can be inferred from human-wearable sensors such
as WiFi enabled smart phones [13] or RFID devices [14], if
these devices are carried by all occupants. Ambient sensor sys-
tems [3], [15] use collections of sensors such as temperature,
light, door switches, or electricity consumption or computer
use [16] to infer the presence of people in a room.

Our goal is to estimate occupancy for small numbers of
people with high accuracy using a low cost thermal array
sensor. The recent commercial availability of inexpensive
thermal sensor arrays offers new opportunities for achieving
this goal. For example, the Melexis MLX90620 [17] is a
16 by 4 thermal array, around US$55, that can detect the
thermal signature of people in a room up at distances of 8 m to
15 m [6]. Panasonic’s Grid-EYE [4] is an 8 by 8 sensor array,
around US$35, that can monitor a 2.5 m square area when
mounted on a 3.0 m ceiling, giving pixels of approximately
60 cm square. Research systems utilising low-pixel sensor
arrays with motors to enable larger images to be pieced
together show good accuracy for controlled test settings [7],
[8]. Commercial thermal camera systems such as the Irisys
Gazelle people counter [2] and the FLIR ONE module for
mobile phones, US$250 [18], are currently too expensive for
our low cost requirement, but prices are falling.

Thermal array sensors cannot directly sense occupancy, but
must be coupled with intelligent software algorithms to infer
occupancy counts. A typical software pipeline for occupancy
estimation comprises:

1) pre-processing (noise removal and thresholding);
2) feature extraction (from the thermal image);
3) training one or more classification algorithms to infer

occupancy counts from the image features; and
4) combining the results of different classification algo-

rithms, when available.

A few occupancy estimation systems have been proposed
using thermal arrays. The ThermoSense system used the
Panasonic Grid-EYE and a Passive Infrared Sensor (PIR) [4],
[19]. The PIR is used for basic motion detection to identify
when the sensing area is empty and the thermal array is then
used for occupancy estimation when there is at least one
person in the room. Thermosense was tested with a ceiling
mounted setting to detect up to 3 people sitting at office desks.

Amin et al. [5] used an optical camera and a thermal
array for sensing with a back-propagation neural network
classifier trained to estimate the number of occupants. A
ceiling mounted system was tested for occupancy estimation in
the waiting area outside an elevator. It was found that sensor
modalities complemented each other with the thermal array
being more accurate for more than 6 people and the camera
for fewer than 6. An ensemble classifier that combined the
results from both systems gave the best performance. Kahn
et al. presented a hierarchical approach that first determines
occupancy or not, next it estimates broad classes of occu-
pant numbers, and finally exact numbers of occupants [15].
Although the system used ambient sensing modalities such

Fig. 1. (i) top view layout of the circuit containing a) Battery pack, b)
Raspberry Pi, c) Arduino, d) Level-shifting circuitry, e) Movable sensor
mount, f) PIR, g) visible camera, h) MLX90620; (ii) front expanded view
of the 3 sensors

as temperature and light, its hierarchical machine learning
approach is applicable for other sensor modalities.

Existing systems are typically designed, trained and eval-
uated for a single space and sensor setting. It is not known
how well these systems perform in different settings. Our aim
is to support the development of more accurate, robust, and
general purpose occupancy counting systems by investigating
the contributions of individual steps of the software pipeline
to the performance of the whole system.

III. IMPLEMENTATION

Our estimation system consists of a 4×16 thermal detector
array (MLX90620) and Passive Infrared Sensor (PIR). A
visible camera is used in experiments to evaluate the accuracy
of the sensor. All sensors interrogate the same area. The
camera and thermal detector array were fixed and subse-
quently registered so that their images could be overlaid.
The arrangement of the sensors is shown in Fig. 1(i), with
closer detail on the sensors in Fig. 1(ii). Both thermal and
visual data were collected to determine the accuracy of the
machine learning classification algorithms used. The camera
and passive infrared sensor are directly interfaced to a mi-
crocontroller (Arduino), which is subsequently connected into
a local computer (Raspberry Pi) for data storage. Registered
visual and thermal images are captured simultaneously frame
by frame.

Our sensor system uses supervised learning algorithms in
which the system is “trained” to identify the number of
occupants using labelled training data. The trained algorithm
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Fig. 2. Physical arrangement of the classifier experiment including (a) side
view showing test rig in Fig. 1 mounted at ceiling height, (b) physical extent
of the mapped area [20]

can then be used on any unknown (unlabelled) data. During
experiments, the video sequence was labelled manually with
the number of people in the sensor’s field of view. This infor-
mation is used as ground truth for training purposes. Two types
of classification algorithms were considered: numeric and
nominal. Numeric algorithms are based on linear regression. A
prediction of 2.7 people can be interpreted as 3 people, while
a prediction of 2.9 is also interpreted as 3 people but with
stronger confidence. Nominal algorithms assign a captured
frame to one of a fixed number of classes, for example, 1-
person-present, 2-people-present, 3-people-present. Nominal
algorithms have additional advantages in situations where the
classes may not be identical to the number of people. For
example, 1-to-3-people-present, 4-to-7-people-present, 8-or-
more-people-present could be more useful categories in some
circumstances, while also being potentially easier to train.

In order to make their predictions, machine learning algo-
rithms use feature vectors that describe relevant properties of
each captured frame. For example, the number of sufficiently
“hot” pixels in a captured frame is one feature that is correlated
with the number of occupants, and so can be used for
occupancy estimation.

Since the data input to the classification algorithms is
based on experimentally obtained images, the training data
may be unbalanced in the number of frames belonging to
each category. Significantly unbalanced data can degrade the
performance of machine learning algorithms. We found that in
most cases, the zero-people case was the most frequent, and
this case unbalanced the data sets. The thermal array is used
only to distinguish between the cases with a positive numbers
of occupants, and these cases give a reasonably balanced
dataset suitable for machine learning.

For evaluation, our system was mounted on a 2.6 m ceiling,
pointing down at a slight angle in order to prevent the
interference of the mounting pole and to increase thermal mass

detected as shown in Fig. 2(a). The sensor detects occupants
in a rectangular area of approximately 3 m by 0.7 m in which
up to three people may be present. This is similar to the
spaces monitored in previous studies [3], [4]. Multiple thermal
arrays or incorporating a motor to move the sensor [7], [8]
could be used to monitor larger areas. Our mounting gave
pixels of approximately 17 cm2. People may be only partially
visible in the field of view and this edge-case is an important
consideration for the detection system. Temporal sequences of
captured images alternate between periods where the number
of occupants is changing (people entering or leaving) and
stable periods.

The scenario of an MLX sensor mounted in a corridor or
large laboratory was considered in [6]. Using the 60 by
15 degree option, the field of view at 8 meters from the
sensor would be 9.2 m by 2.1 m giving pixels of approximately
56 cm2. For this scenario a standing person would occupy an
area of around 4 by 4 pixels [6].

All experiments involved between one and three people,
entering from the left and exiting from the right. Experi-
ments included walk through, persons adding to a scene by
standing or sitting, or persons exiting a scene, sequentially or
simultaneously. The people involved were of average height,
wearing various clothing. The room was monitored to be
18 ◦C during these experiments. Each experiment was recorded
using the visible camera, the thermal sensor array and the
passive infrared sensor (PIR sensor), synchronized at 1 Hz over
approximately 10×60-120-second intervals. Each experiment
had 10-15 frames at the beginning where nothing was within
the view of the sensor to allow the thermal background to be
calculated. Each frame generated from these experiments was
manually tagged with the ground truth value of its number of
occupants.

IV. FEATURES

The raw thermal data is transformed into a set of features
to be used by the classification algorithms. The first task is
to distinguish between background infra-red radiation in the
room from static objects such as computers or televisions, and
radiation from humans. We used the background separation
algorithm and features suggested by Beltran et al. [4] to
enable comparison. Occupants are separated from background
infra-red radiation through the use of an image subtraction
algorithm maintaining per-pixel mean and standard deviation
values to update a thermal background map. If no motion is
detected for 15 minutes, this map is updated using a slow-
moving Exponential Weighted Moving Average (EMWA).
Additionally, if the room remains occupied for a long period,
a more complex scaling algorithm is used which considers the
coldest points in the room empty, and averages them against
the new background, then performs an EMWA with a lower
weighting. The result of this background differencing stage is
an array of pixels which are either “occupied” or “empty”.
To control the experimental scope more tightly, we opted to
exclude the use of this more complex scaling algorithm and
PIR-based non-occupancy detection from our data, and instead
used a manual indication of non-occupancy.
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Fig. 3. Process flow diagram for turning raw sensor input into occupancy
estimates

The second task is to extract features that can be used to
infer occupancy from the pixel array. The goal is to do this
in such a way that the algorithms work well when applied
to different spaces. Beltran et al. [4] identified three features
that were correlated with the number of human occupants and
not too susceptible to individual room conditions, the size of
people, or the mounting position of the sensor. Each feature is
correlated with the number of occupants in the field of view.
Using multiple features makes detection more robust than with
a single feature. Three different features were used:

1) Number of active pixels: The total number of “occupied”
pixels in a given frame

2) Number of connected components: If each active pixel
is joined with its immediate active neighbors, how many
“islands” of active pixels (termed connected components
in graph theory) exist.

3) Size of the largest connected component: The number
of active pixels contained within the largest connected
component.

V. CLASSIFIERS

A selection of machine learning algorithms were tested
to classify occupancy based on the features. To perform
classification tests we use version 3.7.12 of the open-source

Weka toolkit [21], which provides easy access to a variety of
machine learning algorithms and the tools necessary to analyze
their effectiveness. A process flow which describes the process
from the collection of the 4×16 thermal sensor data through
the Weka classification algorithm to determine occupancy is
show in Fig 3.

For comparison, we replicated three machine learning clas-
sifiers used by Beltran et al. [4], namely K-Nearest Neighbors
(KNN), a Multilayer Perceptron Artificial Neural Network
(MLP) and a Linear Regression model. When evaluating their
test cases, for best comparison we used their approach of
limiting the maximum number of people to 3 and for the
MLP, using 70% of the data for training the neural net, 15%
for testing the net and the remaining 15% for validating
results. For the Artificial Neural Network we used Weka’s
“MultilayerPerceptron” neural network which creates a hidden
layer of five neurons given as:

0.5(attributes+ classes)

It uses a sigmoid activation function for all neurons, except
in the case that a numerical answer is to be predicted, in which
case, it uses a linear activation function for the output layer.

For the K-Nearest Neighbors (KNN) implementation we
used k = 5 with Euclidean distance as the distance metric
between feature vectors. The Linear Regression model used
is y = βAA+βSS+β , where A is the number of active pixels,
S is the size of the largest connected component, and the
β values represent the corresponding coefficients. Following
Beltran et al. [4], we excluded the number of connected
components feature in the Linear Regression model since they
found it decreased classification accuracy.

As well as replicating the classification algorithms used
by Beltran et al. [4] we evaluated several other classification
algorithms, as summarised in Table I. 0-R is used as a lower
bound case. For nominal prediction it classifies all new data as
belonging to the category that is most common in the training
data. For numeric prediction it classifies all new data as the
mean of the test data.

Most of these techniques are well known machine learning
approaches [22], but the KStar (K*) algorithm is less com-
mon and so we summarise the approach. The K* algorithm,
developed by Cleary and Trigg [23] is a type of K-Nearest
Neighbors algorithm. Instead of Euclidean distance to compare
neighbours, K* uses entropic distance: a measure of how
much effort is required to convert one example into another.
This has several positive effects: it makes the algorithm more
robust to missing values and enables the classifier to output
either a numeric or nominal result. We chose K* because
it allows the investigation of KNN-like techniques for the
numeric classification and provides a second entropy based
method in addition to C4.5. For all tests where not specifically
stated otherwise, we use 10-fold cross-validation to validate
our results.

Table II shows the accuracy results for each classification
algorithm on our experimental data set. For comparison,
the results reported by Beltran et al. [4] are also shown.
We replicated the parameters and classification algorithms
reported by Beltran. Our results were within 5% of RMSE
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TABLE I
WEKA PARAMETERS USED FOR SELECTED CLASSIFICATIONS

ALGORITHMS

Type Attribute Weka Class & Parameters
Neural
Network
(ANN)

Nominal,
Numeric

weka.classifiers.functions.Multilayer
Perceptron -L 0.3 -M 0.2 -N 500
-V 15 -S 0 -E 20 -H 5

K-
Nearest
Neigh-
bours
(KNN)

Nominal,
Numeric

weka.classifiers.lazy.IBk
-K 5 -W 0 -F -A
"weka.core.neighboursearch.LinearNNSearch
-A \"weka.core.EuclideanDistance -R
first-last\""

Naive
Bayes

Nominal weka.classifiers.bayes.NaiveBayes

Support
Vector
Machine
(SVM)

Nominal weka.classifiers.functions.SMO -C
1.0 -L 0.001 -P 1.0E-12
-N 0 -V -1 -W 1 -K
"weka.classifiers.functions.supportVector.Poly
Kernel -C 250007 -E 1.0"

C4.5
Decision
Tree

Nominal weka.classifiers.trees.J48 -C 0.25 -M 2

K* Nominal,
Numeric

weka.classifiers.lazy.KStar -B 20 -M a

Linear
Regres-
sion

Numeric weka.classifiers.functions.LinearRegression
-S 0 -R 1.0E-8

0-R Nominal,
Numeric

weka.classifiers.rules.ZeroR

TABLE II
RESULTS OF CLASSIFICATION EXPERIMENTS

Classifier RMSE1 Precision (%) Correlation (r)
Thermosense Reported Results [4]

KNN2 0.346

Lin Reg3 0.385 0.926

MLP 0.409 0.945

Thermosense Replication on our Data

KNN (Nom)2 0.364 65.65

MLP 0.592 0.687

Lin Reg3 0.525 0.589

KNN (Num)2 1.123 0.377

Numeric Classification Algorithms

K* 0.423 0.760

0-R 0.651 -0.118

Nominal Classification Algorithms

K* 0.304 82.56

C4.5 0.314 82.39

MLP 0.362 77.14

SVM 0.398 67.18

N. Bayes 0.405 63.59

0-R 0.442 49.74
1: Model deviation from occupant ground truth
2: Includes zero occupant cases in training data
3: Excludes number of connected components feature
%: Precision, measuring a nominal test result
r: Pearson’s r, measuring a numeric test result

for the KNN model using nominal data, but our best attempts
yielded RMSE 36% and 44% higher for the Linear Regression
and MLP models, respectively. This agrees with the much

lower correlation coefficients (r) value in our replicated data.
We believe these differences are due to the angle inherent in
our imaging system shown in Fig. 2 compared with ceiling
mounted sensors, as well as the rectangular field of our sensor
rather than a square field of view. Our setting allowed for
more situations in which people were partially included in the
scene than the Thermosense experiments, which may also have
affected accuracy. Nevertheless, such physical arrangements
and occupancies are typical in installations and the robustness
of classifiers should take this situation into account.

For our classification algorithms, accuracy was significantly
improved for nominal classification, where in some cases
we exceeded the RMSEs reported by Beltran et al. [4].
Interestingly, within our dataset, the K* and C4.5 algorithms
were most accurate, with accuracies of 82.56% and 82.39%
respectively. The RMSEs of 0.304 and 0.314 (for K* and C4.5
respectively) were a significant improvement on the best case
Thermosense KNN RMSE of 0.346. Further numeric classifi-
cation with K*, showed better correlation than any replicated
Thermosense technique, with r = 0.760. Additionally, the K*
RMSE of 0.423 was also superior.

For all the results reported in Table II, occupancy count
is predicted based on a single thermal snapshot of the field
of view. It does not take into account the past history of
occupancy. Snapshots are recorded once a second. In practice,
predicting the number of people in a room during an interval
of seconds or even minutes is sufficient for most occupancy
estimation applications such as climate control and security.
So we investigated whether the fine-grained experimental data
could be used to obtain more accurate results at a coarser
time granularity. Erikson et al. approached this problem by
using a weighted moving average filter over the time series of
frame-by-frame predictions to define the final prediction count.
They did not, however, give separate results for the effect of
this step over the unfiltered classification results. A weighted
average approach can correct for one-off point anomalies in
the predictions (that is, a single incorrect prediction within
a series of correct ones). But weighted averaging also delays
response to true changes of occupancy in the ground truth. We
tested window sizes from 2 seconds to 1 minute and found
that weighted average filters were not effective on our experi-
mental data, but that it actually decreased prediction accuracy.
Another approach is to use a coarser temporal grain for both
ground truth and prediction. We defined ground truth accuracy
per W -second window as the most frequent occupancy count
occurring in that window. Predicted occupancy over a W -
second window was defined in the same way, based on the
1-second prediction data. With this filtering approach the best
case prediction accuracy was over 12% higher using a 40-
second window, compared with a 1-second window. In future
work we plan a more detailed investigation of which types
of temporal features are best for improving the accuracy and
robustness of occupancy sensing.

VI. SENSOR CHARACTERISTICS

This section considers how sensor characteristics of the
thermal detector array affect occupancy estimation. Fig. 4
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shows the output from six of the sensor’s central pixels as
a hot object is moved from left to right at approximately
constant speed. One of the most interesting phenomena in this
graph is the variability of the object’s detected temperature as
it moves “between” two different pixels. Each pixel has a peak
in the detected temperature, which rolls off as the object passes
the field of view. The data fits a Lorentzian with a full-width
half maximum of 1.6 s. The time axis can also be interpreted
as a spatial extent, given the constant velocity at which the
hot object moves pass the detector. For the 60◦ field of view
for the sensor we calculated that a hot object traveling past
at 0.2 m/s at a distance of 4 m would give rise to a thermal
signal on the detector with a 1.44 s FWHM, consistent with
the measurement. This signal variation across a single detector
is not anticipated to impact our intended use as an occupancy
detector, as it only arises for hot objects which are very close
or very small (small angular extent).

One of the features of the MLX is the ability to sample the
thermal data at a variety of sample rates between 0.5 Hz and
512 Hz, where a higher sample rate results in larger thermal
fluctuations. Since our algorithm separates occupants from
a thermal background, it is important to determine if the
noise could affect our ability to do this accurately. Fig. 5
shows the temperature of a central pixel of the sensor at
different frame rates. Each measurement contains two datasets,
one from the pixel viewing a person and the other viewing
only the thermal background. As expected, the noise in the
thermal data increases significantly with the sample rate.
Further, rather than simply downsampling to a lower rate,
the sensor integrates the data over the period of the sampling
rate, averaging the data over longer periods at lower sample
rates which decreases the variation in data. In each dataset
we include the 3σ level of the background thermal variation.
Above the set level, the probability that the thermal noise will
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Fig. 5. Plot of occupant and background sensor noise at sampling speeds
0.5 Hz – 8 Hz

be detected as a person is less than 0.13%. The observation
here is that the sampling rate and threshold level to determine
occupancy are fundamentally linked in this type of sensor
array.

In the 0.5 Hz case, the third standard deviation above
background (3σ ) is ∆T = 6.4 ◦C below the minimum occu-
pancy value (o) detected, which we define as a guard-band
(∆T ). As sampling rate increases, this guard-band between the
occupancy value and the 3σ -background threshold slowly de-
creases, becoming 5.75 ◦C for 1 Hz, 5.53 ◦C for 2 Hz, 4.48 ◦C
for 4 Hz, and only 3.15 ◦C for 8 Hz. This data, shown in
Fig. 6, indicates the variation of the thermal guard-band and
suggesting a theoretical upper limit of 25 Hz for the sampling
rate. However, in none of the cases studied was 3σ ≥ min(o),
which would cause a false positive. The variation of the output
signal with the square root of the frequency is consistent with a
thermal sensor which is thermal or Johnson noise limited [24].
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Fig. 6. Thermal guard band variation as a function of the sampling rate

VII. DISCUSSION

Creating a system that is wholly automated and can detect
occupants with a high level of accuracy is important to ensure
that climate control, patient security and other occupancy-
estimation tasks are reliably executed. Our results differ from
the RMSE values of Thermosense with the K-Nearest Neigh-
bors, Linear Regression, and Multi-Layer Perceptron classi-
fiers. We believe this was because the classifiers Thermosense
used were highly sensitive to their sensor’s specific properties
such as pixel arrangement (Grid-EYE 8×8 pixel array), the
inclusion of partial people within the sensed region, and a flat
sense region (no projection angle). Our sensor contained 4×16
pixels which better suits rectangular spaces and corridors, and
we considered only integer values of people in our models
as this appeared the most appropriate metric for decision
making in applications such as climate control. However
among our own selected machine learning algorithms, K* and
C4.5 achieved accuracies in the 80%+ range. These algorithms
also improved upon Thermosense’s best RMSE by 12% and
9% respectively. Both of these algorithms leverage entropy
measures as a way of partitioning data, suggesting for the first
time that that entropy-based approaches may be more suited
to this application. Using the K* or C4.5 machine learning
algorithm, we are confident that this prototype could achieve
similar levels in practical applications.

VIII. CONCLUSIONS

This paper investigates the performance of an occupancy
estimation system based on a thermal detector array. Different
machine learning classifiers were compared, using training
data obtained from a 4 by 16 thermal detector array and a
passive infrared sensor. The results showed poor agreement
with previously reported systems that used a square-grid
for estimation. Our experiments considered implementation
challenges such as detection threshold levels (noise), angled
occupancy imaging and non-square (rectangular) fields of
view. Understanding the sampling rate-noise trade off of
thermal detector array sensors was important to ensure robust
estimation. We observed that nominal classification algorithms
performed better than numerical ones and that employing

additional features, such as recent occupancy history, could
improve classification performance. For the first time, entropy
based classifiers were considered for occupancy estimation,
and found to give the best performance in terms of the lowest
root mean squared errors (RMSE) and highest correlation
coefficients. In particular, the K* algorithm was found to be
the best classifier, with an accuracy of 82.56% and a RMSE
of 0.304.
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